SBME Research Seminar - Dr. Hannah Carter
Immune Checkpoint Blockade (ICB) has revolutionized cancer treatment, however mechanisms determining patient response remain poorly understood. We used machine learning to predict ICB response from germline and somatic biomarkers and studied feature usage by the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher T follicular helper infiltrates were robust to defects in the class-I Major Histocompatibility Complex (MHC-I). Further investigation uncovered different ICB responses in MHC-I versus MHC-II neoantigen reliant tumors across patients. Despite similar response rates, MHC-II reliant responses were associated with significantly longer durable clinical benefit (Discovery: Median OS=63.6 vs. 34.5 months P=0.0074; Validation: Median OS=37.5 vs. 33.1 months, P=0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC-II but not MHC-I reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.
Events
Calendar
- This event has passed.
SBME Symposium 4
June 7, 2022
SBME’s Annual Symposium returns (and hopefully in person!) on June 7, 2022
Join us for a full day that will showcase industry panels, research presentations, poster sessions, a keynote talk and more. Meet leaders from across the Biomedical Engineering spectrum, network, and learn about the very latest on the front-lines of innovation and exploration in Life Science.
This page will be filled out with more details closer to the event so stay tuned and save that date!