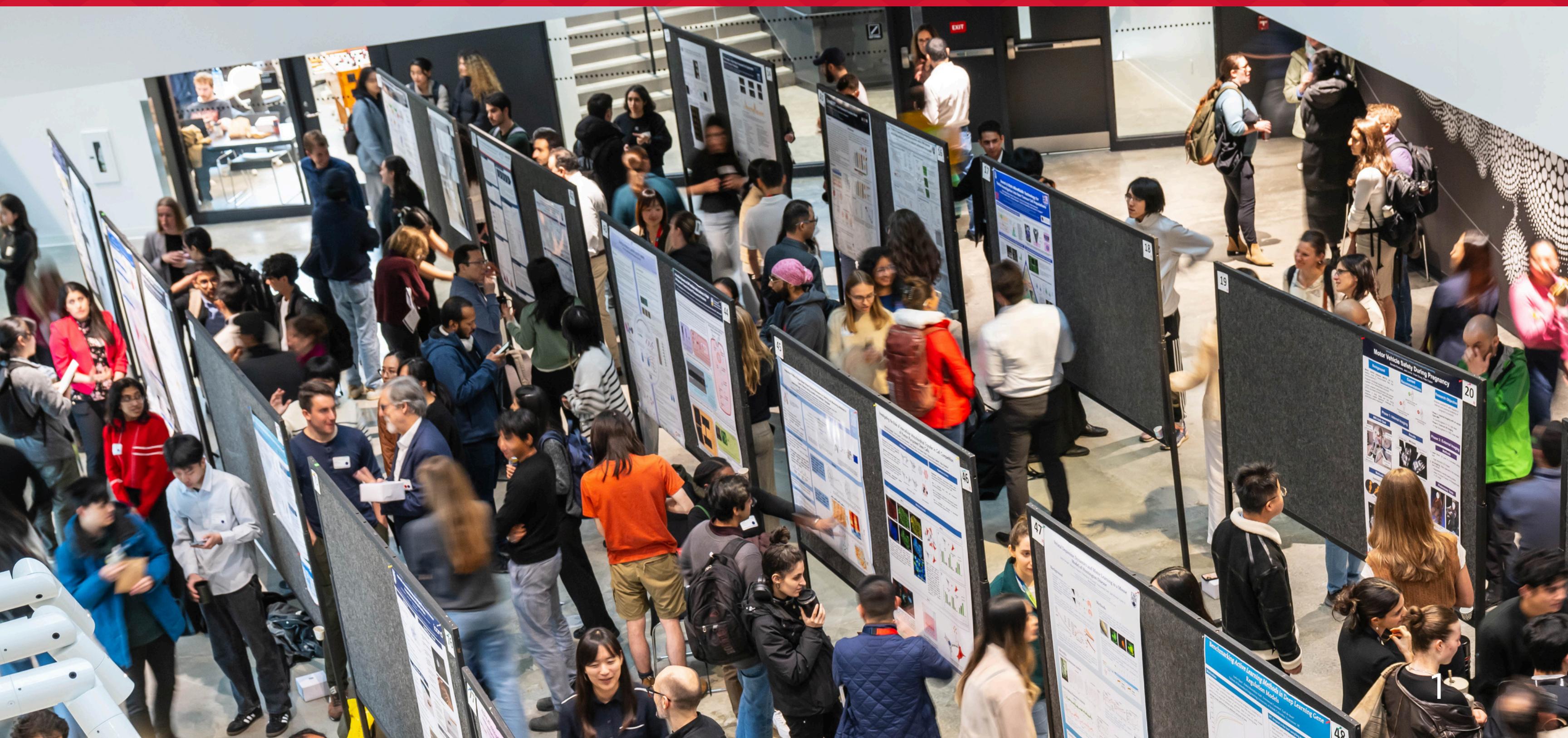


THE UNIVERSITY OF BRITISH COLUMBIA

School of Biomedical Engineering


Faculties of Applied Science and Medicine

SBME RESEARCH DAY

FEBRUARY 17, 2026

Trainee Talks & Posters

Morning Session: 10:15 - 11:20am
TRAINEE TALK #1

Rohan Birk
Master's Student, SBME

Supervisor: Dr. Antony Hodgson
Surgical Technologies Laboratory

Scapular Tip Osseous Free Flap in (Sub-)Total Nasal Reconstruction Using Virtual Surgical Planning: Clinical, Functional and Cephalometric Outcomes

Rohan Birk, Alex Chen, Cornelius Kürten, Khanh Linh Tran, Amelie Marshall, Amanda Ding, Antony Hodgson, Sidney Fels, J. Scott Durham, Eitan Prisman

Virtual Surgical Planning

Computer-Aided Surgery

Nasal Reconstruction

Background and Objective: Reconstructing the nose after cancer resection is challenging due to its critical functional and aesthetic role. The scapular free flap has recently been used for these complex reconstructions due to its triangular geometry, blood supply, and soft tissue options. However, little has been published regarding virtual surgical planning (VSP), surgical techniques, or patient outcomes. This study develops and applies VSP for total nasal reconstruction with the scapular free flap.

Methods: Eight (sub-)total nasal reconstructions were planned with in-house VSP and intraoperatively guided using 3D-printed models and cutting guides. Patient-reported outcomes (SCHNOS, NAFEQ, DASH) were administered. Cephalometric measurements on the pre-operative, virtual plan, and post-operative models were collected.

Results: VSP was successfully applied in eight cases, with an average operative time of 258 ± 122.1 minutes. Patients reported adequate functional and aesthetic outcomes (SCHNOS cosmesis sub-scale: $34 \pm 39.4/100$, NAFEQ function sub-scale: $22.4 \pm 4/35$) as well as low donor site morbidity ($21.5 \pm 15.2/100$). The mean signed difference between the pre-operative and post-operative soft-tissue CT for the nasal bridge length, nasofrontal angle, and nasal tip angle was 0.45 ± 3.9 mm, $7.2 \pm 11.8^\circ$, and $8.7 \pm 14.8^\circ$, respectively, indicating that the VSP-guided reconstructions accurately recreated the pre-operative nasal aesthetics.

Conclusions: This is the largest case series involving the scapular free flap for complex nasal reconstruction, and the first to utilize VSP for preplanning. This technology aided surgeons in accurately recreating pre-operative nasal structure and following the reconstructive plan.

Morning Session: 10:15 - 11:20am
TRAINEE TALK #2

Alice Hong
Master's Student, SBME

Supervisor: Dr. Carolina Tropini
Tropini Lab

A Genetically Engineered Probiotic Bacterium to Report Changes in the Gut Microenvironment

Alice Hong, Jerry He, Alex Pei, Juan Burckhardt, Tatiana Lau, Giselle McCallum, Maria Orozco, Carolina Tropini

Synthetic Biology

Gut Microbiome

Biosensors

Malabsorption is a gastrointestinal perturbation that arises from poor digestion or absorption of solutes in the gut, leading to high particle accumulation and increased osmolality in the gut lumen. This condition commonly arises in diseases such as celiac disease and inflammatory bowel disease. Current diagnostic methods only detect malabsorption once symptoms become overt, missing crucial opportunities for early therapeutic intervention. To bridge this gap, we engineered gut bacteria as living biosensors capable of reporting on the state of the gut in real time and non-invasively. Utilizing the probiotic strain *Escherichia coli* Nissle 1917, we identified transcriptional responses to osmotic and oxidative stress in the gut. We then used the promoters to these genes to produce a fluorescent response to increased gut osmolality and in regions of oxidative stress. To improve the dynamic range of our biosensors, we screened ribosomal binding sites with a range of strengths to alter translational initiation intensity, boosting fluorescence levels when induced. Next, we reduced basal levels of expression by driving antisense transcription from promoters placed downstream of the fluorescent protein. Finally, we demonstrated non-invasive *in vivo* detection of malabsorption using stool sampling and flow cytometry, validating these biosensors for biomedical applications. This work offers a promising approach for early detection of gastrointestinal disorders and could be further adapted to deliver therapeutic molecules directly in the gut, providing a personalized probiotic platform for improved gut health management.

Morning Session: 10:15 - 11:20am
TRAINEE TALK #3

Arshdeep Khurana Master's Student, SBME

Supervisor: Dr. Babak Shadgan
Implantable Biosensing
Laboratory

Hemodynamic Effects of Surgical Maneuvering in Hypospadias Repair: a Near-Infrared Imaging Study

Arshdeep Khurana; Babak Shadgan, Kourosh Afshar

Near-Infrared Imaging

Urology

Hypospadias

Hypospadias is a common pediatric genital defect, in which the urethral opening, or meatus, is proximally displaced from the tip of the penis. Hypospadias is generally treated with a complex reconstructive procedure whereby donor tissue is transferred from the patient to correct abnormalities in the urethral plate, prepuce, or deeper structures. Successful tissue transfer depends on maintenance of a strong vascular supply, with poor perfusion potentially resulting in suboptimal outcomes like poor healing or urethral fistula. The donor tissue blood supply is currently evaluated based on a subjective, visual examination by the surgeon, and can be confounded by surgical experience, creating a gap for an objective intraoperative assessment methodology of tissue oxygenation and viability.

Near-infrared imaging (NIRI) is a non-invasive, non-contact imaging technique that leverages the differential absorption properties of oxy- and deoxyhemoglobin to compute the microvascular tissue oxygen saturation. We applied a handheld NIRI device that is focussed 30 cm from the imaging site to monitor how the oxygenation of the donor flap and recipient site evolves throughout the surgical intervention. The ventral and dorsal aspects of the penis were imaged before and after the development of a coverage flap. For all images, the anatomical region of interest was segmented in MATLAB and its average oxygenation was calculated. Time-series oxygenation data shows that surgical manipulation of the ventral aspect of the penis to correct meatal displacement indeed increases oxygenation. Mobilization of a coverage flap from the dorsal aspect slightly reduces oxygenation, though not to an appreciable extent.

Morning Session: 10:15 - 11:20am
TRAINEE TALK #4

Katie Chen
PhD student, SBME

Supervisor: Dr. Calvin Kuo
HuMBL

Clinical Validation of an Optically-Tracked Ultrasound System for Hip Dysplasia Screening

Kixin Katie Chen, María José Bontá Suárez, Jakub Piwowarczyk, Emily Schaeffer, Kishore Mulpuri, Antony Hodgson

Ultrasound Imaging

Pediatric Orthopedics

Hypospadias

Developmental dysplasia of the hip (DDH) is a common pediatric hip dysmorphism that, when undetected or inadequately treated in early life, can substantially impair quality of life, leading to gait abnormalities, chronic pain, and early-onset osteoarthritis. Clinical diagnosis of DDH relies primarily on conventional 2D ultrasound. However, this modality is highly plane-dependent and subject to inter- and intra-operator variability that can produce inconsistent diagnostic outcomes for the same hip.

Automated extraction of DDH metrics from 3D ultrasound using deep learning has demonstrated improved diagnostic reliability, but the high cost of 3DUS systems limit their availability in routine pediatric practice. To bridge this gap, we developed and evaluated an optically tracked 2D ultrasound system (OTUS) in a clinical setting and acquired a multimodal dataset comprising repeated OTUS scans and a single reference 3DUS scan per hip from pediatric patients at BC Children's Hospital. Our results showed that (1) although OTUS is generally less repeatable than 3DUS, the overall magnitudes of variability across repeated scans of the same hip were comparable, and (2) clinically acceptable DDH metrics could not be robustly reproduced across the full dataset, but in cases where OTUS scan quality was high, we obtained anatomically plausible segmentations and DDH metrics that closely resembled those derived from the corresponding 3DUS scans.

By assembling technically mature components into a deployable system, this work characterized the performance and limitations of OTUS under real-world conditions and identified key barriers for clinical use. These findings inform targeted refinements, particularly improvements to scan acquisition quality and the incorporation of geometry-constrained metric extraction, that are necessary to advance OTUS towards clinical readiness. Collectively, this study represents a critical translational step toward a more accessible, repeatable, and operator-independent alternative for DDH screening in routine pediatric care.

Morning Session: 10:15 - 11:20am
TRAINEE TALK #5

Laura Gonzalez
PhD Student, SBME

Supervisor: Dr. Peter Zandstra
Stem Cell Bioengineering Lab

Novel Humanized DRAGA Mouse Recapitulates Human T-Cell Differentiation in the Mouse Thymus With HLA-Matched Donors

Laura I. Gonzalez, Mariana Rendeiro, Vivian Wu, Glenn Edin, Margaret Hale, Fabio M.V. Rossi, David J.H. F. Knapp, Connie J. Eaves, and Peter W. Zandstra

Humanized Mouse Model

T-cell Differentiation

HLA Matching

Differences between mice and humans, including variations in the major histocompatibility complex (MHC) and immune function, pose challenges for accurately modeling human biology in mice. Therefore, improving humanized mouse models, particularly models of human hematopoietic lineages (such as functional lymphocytes), is essential. This optimization is particularly relevant to the study of the immune system, as it advances treatments such as CAR-T therapy and immune checkpoint inhibitors for cancer.

A novel mouse model with the essential immune components to generate mature B and T cells has been developed. The DRAGA mouse model, with NRG background, carries human HLA-A*02:01 and HLA-DRB1*04:01 transgenes. These transgenes enhance hematopoietic engraftment and promote the development of functional T and B cells.

We evaluated the efficacy of HLA-matched versus HLA-unmatched CD34+ cord blood (CB) cells engrafted into DRAGA mice. Flow cytometric analysis of bone marrow, peripheral blood, and thymus revealed statistically significant differences between groups, suggesting that HLA-matched CB cells provide superior support for both early and late stages of T-cell differentiation compared with HLA-unmatched CB cells.

We further characterized thymic tissue from humanized mice using CODEX imaging. Human progenitor cells from HLA-matched CB successfully complete early T-cell development, as indicated by double-positive (DP) cells, and undergo T-cell positive and negative selection, as shown by CD40 and CD68 expression. Comparison with human thymic tissue revealed conserved T-lineage phenotypes and thymic architecture. This mouse model provides a platform for studying human immune system biology and may facilitate the development of cancer immunotherapies such as CAR-T and checkpoint inhibitors.

Morning Session: 10:15 - 11:20am

TRAINEE TALK #6

Tiffany Tse

PhD Student, SBME

Supervisor: Dr. Myeong Jin Ju
 Computational Ophthalmic
 Imaging Lab

Melanin-Contrast-Driven 3D Mapping and Quantification of Choroidal Vasculature Using Polarization-Diversity OCT

Tiffany Tse, Joseph Soo, Mohammad Shahidul Islam, Parnian Akrami, Zaid Mammo, Myeong Jin Ju

Optical Coherence Tomography

Retinal Imaging

Polarization Diversity

The choroid plays a critical role in maintaining retinal health by supplying oxygen and nutrients to the outer retina, retinal pigment epithelium (RPE), and photoreceptors. Structural and vascular abnormalities of the choroid are implicated in numerous retinal diseases, including central serous chorioretinopathy, age-related macular degeneration, and high myopia. However, consistent visualization and quantification of the choroid remain challenging due to limited contrast, signal attenuation with depth, and speckle noise in conventional OCT. Polarization-diversity OCT (PD-OCT) provides melanin-specific contrast through degree-of-polarization-uniformity (DOPU), enabling enhanced delineation of melanin-rich layers such as the RPE and choroid.

In this study, healthy controls were imaged using a custom-built PD-OCT system. Ten volumetric scans per eye were motion-corrected and registered using an AI-assisted 3D feature-based algorithm to improve SNR and structural continuity. The derived transformations were applied to DOPU volumes to enhance melanin contrast. The RPE and choroid-scleral interface were segmented using the DOPU signal, enabling choroidal thickness computation. Choroidal vasculature was extracted using a multi-scale Optimally Oriented Flux vesselness filter followed by adaptive thresholding to generate 3D vessel masks.

Quantitative analysis included measurements of choroidal thickness, choroidal vascularity index (CVI), retinal thickness, and regional DOPU values. En face vascular projections and thickness maps were generated for visualization of regional vascular and structural patterns. Furthermore, a U-Net model was trained to predict choroidal vasculature directly from single-intensity OCT volumes using DOPU-derived vessel masks as ground truth. This framework enables robust, quantitative 3D mapping of choroidal vasculature and structure, supporting clinically translatable assessment of choroidal biomarkers.

Afternoon Session: 2:30 - 3:20 pm
TRAINEE TALK #7

Dr. Tiffany Carlaw
Postdoctoral Fellow, SBME

Supervisor: Dr. Sarah Hedtrich
Hedtrich Lab

Non-Viral *in situ* Gene Editing Effectively and Safely Rescues Congenital Ichthyosis-Causing Mutations in Human Skin

Tiffany Carlaw, Dilem Ceren Apaydin, Gaurav Sadhnani, Jan Renziehausen, Elena Lizunova, Viviane Filor, Anna Hiller, Sophia Brumhard, Vincent Halim, Ulrike Brüning, Johannes Bischof, Rafaela Horbach Marodin, Daniel Z. Kurek, Manuel Rhiel, Sandra Ammann, Tatjana I. Cornu, Toni Cathomen, Leif Erik Sander, Benedikt Obermayer, Fabian Coscia, Jennifer Kirwan, Ulrich Koller, Achim D. Gruber, Wolfgang Bäumer, Sarah Hedtrich

Gene Editing

Lipid Nanoparticle Delivery

3D Human Disease Models

Autosomal recessive congenital ichthyosis (ARCI) is a group of rare, but highly debilitating skin disorders which significantly impair patients' quality of life and currently lack any effective treatment options.

In previous work, our lab provided the proof-of-concept that *in situ* gene editing of human skin tissue is possible via the topical application of LNPs34. After screening a library of LNP formulations, we identified a lead candidate, LNP H, which achieved superior gene editing of the model gene HPRT in primary human keratinocytes and native human skin following topical application. Here, we report clinically-relevant *in situ* correction of the most common ARCI-causing mutation TGM1 c.877-2A>G, a splice-site aberration, in 3D human disease models using patient-derived keratinocytes.

Targeted skin barrier modulation followed by topical application of the cytosine base editor eTD mRNA packaged into lipid nanoparticles yielded functional restoration of ~30% of wild-type transglutaminase 1 enzyme activity in skin tissue. Aiming for durable and potentially curative effects, we combined non-invasive live confocal microscopy and laser microablation to create tiny pores in the viable epidermis which facilitated direct access to the skin stem cells. *In vitro* and *in vivo* toxicity studies harnessing human-based and rodent models demonstrated an excellent safety profile even after repeated application, without systemic distribution of the LNPs and the genetic cargo.

Overall, this study presents the first comprehensive preclinical data on *in situ* correction of an ARCI-causing mutation showcasing its therapeutic potential and paving the way the first effective and potentially curative treatment option for genodermatoses.

Afternoon Session: 2:30 - 3:20 pm
TRAINEE TALK #8

Mayur Mallya

**PhD Student, Graduate
Program in Bioinformatics**

**Supervisor: Dr. Ali Bashashati
AIM Lab**

AI-Driven Biomarker Identification for Bevacizumab Treatment in High-Grade Serous Ovarian Cancer using Whole Slide Images

Mayur Mallya, Hossein Farahani, Stefan Kommooss, Ali Bashashati

Digital Pathology

Deep Learning

Computer Vision

The administration of bevacizumab in conjunction with the standard carboplatin paclitaxel chemotherapy has shown to increase the progression-free survival (PFS) among advanced epithelial ovarian cancer patients. The lack of effective biomarkers for predicting patient responses to bevacizumab, however, remains a major challenge in the personalization of its treatment. Additionally, the high costs and the toxic side effects make it imperative to identify patients who can benefit from bevacizumab.

In this work, we leverage pre-treatment whole-slide images (WSI) from two large-scale phase 3 bevacizumab clinical trials (OVAR11 and OVAR17) to develop AI-based deep survival models to identify high-grade serous ovarian cancer patients favorable to bevacizumab therapy. We train a bevacizumab-specific AI model using the OVAR17 cohort (841 WSIs from 287 patients) and evaluate the trained model on both arms of the OVAR11 cohort – chemotherapy arm (453 WSIs from 179 patients) and the added bevacizumab arm (473 WSIs from 191 patients).

The model significantly stratified the bevacizumab arm of the OVAR11 cohort with PFS as the endpoints (HR 1.6, 95% CI 1.1-2.4, $p < 0.05$) while being unable to stratify the chemotherapy arm of the OVAR11 cohort (HR 1.2, 95% CI 0.7-2.0, $p > 0.05$), suggesting that the model is identifying bevacizumab-response specific histology from the WSIs. The high attention regions from the WSI of patients identified as favorable to the added bevacizumab therapy have the potential to unlock novel predictive imaging biomarkers for bevacizumab therapy in high-grade serous ovarian cancer.

Afternoon Session: 2:30 - 3:20 pm
TRAINEE TALK #9

Rosalyn Carr
PhD Student, SBME

Supervisor: Dr. Matthias Görges
Digital Health Innovation Lab

Offering Return of Results as a Motivator for Research Participation: A Discrete Choice Experiment Survey

Rosalyn Carr, Nicholas West, Matthias Görges

Research Engagement

Study Design

Research Ethics

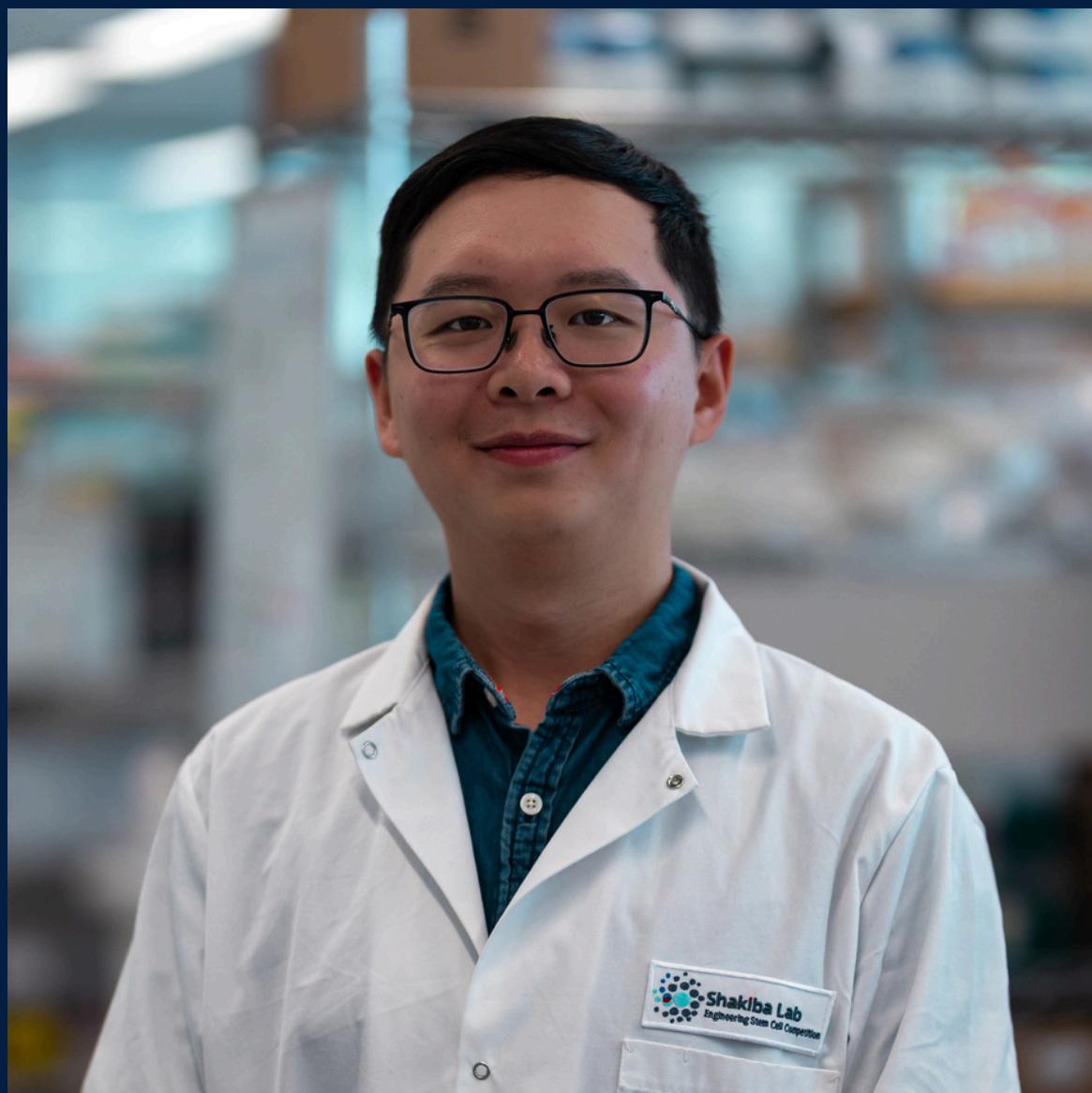
Return of results (RoR) is the process by which researchers share their findings with participants. Often viewed as a considerate act or obligation, the promise of aggregate or personalized RoR could motivate participation in research. Other studies identified factors affecting participation, including study benefits, prior research experience, financial incentives, and social factors. However, none of these studies considered RoR as a potential factor that might affect interest in participation. With research ethics board approval and implied consent, we surveyed members of the general public. Participants were presented with imaginary research scenarios, containing a description of the study and a varied combination of three factors: study duration (30 vs. 90 minutes), remuneration (none vs. \$10 gift card), and RoR (none, aggregate, or personalized). Additional participant characteristic data were also collected, including prior research experience. 483 participants completed the survey, yielding 454 valid responses: 76% identified as female, 21% as male, and 3% as another gender. Most participants identified as White (76%), followed by Asian (21%), and Indigenous (4%). Many participants reported having a chronic condition (52%) or disability (30%). The promise of aggregate RoR was associated with increased willingness to participate compared with no results-sharing (odds ratio 2.90, 95% CI: 2.62-3.22). Providing personalized RoR showed a stronger effect (5.54, 95% CI: 4.99-6.15). Offering monetary incentives showed the strongest effect (6.74, 95% CI: 6.18-7.35). Longer study duration showed a negative effect (0.25, 95% CI: 0.23-0.27). These findings provide quantitative support for integrating personalized RoR into study design.

Afternoon Session: 2:30 - 3:20 pm

TRAINEE TALK #10**Sanchit Chopra**

PhD Student, SBME

Supervisor: Dr. Nozomu Yachie
Yachie Lab**Efforts Towards a Spatiotemporal microRNA Atlas of Embryogenesis**


Sanchit Chopra, Arman Adel, Nanami Masuyama, Nozomu Yachie

Genome Editing

Developmental Biology

Lineage Tracing

Human development begins with a single fertilized egg. In response to different signals, the cell proliferates and determines its fate by executing a complex choreography of molecular reactions. These processes lead to the formation of highly organized tissues in the body. While the early stages of development can be observed under a microscope, the coordinated molecular and cellular reactions that guide whole-body development have been largely unexplored. Over the past three decades, transcriptomic technologies such as microarray, bulk RNA sequencing, and single-cell RNA sequencing have evidently enabled detailed profiling of coding genes to reveal gene expression as the major determinant of cellular diversity, but are limited to offering snapshots in time. MicroRNAs are a type of molecule that regulates gene expression and shapes cell identity and function. As cells evolve, tracking dynamic changes in microRNA profiles offers novel insights into how complex tissues arise. This project aims to create a cellular recording system within human embryonic stem cells. This system will capture and record microRNA activity on synthetic "DNA tapes" as cells spatially organize and differentiate into a gastruloid, a model for a critical early developmental stage characterized by the formation of three distinct cellular layers, each giving rise to different tissues. By recording these microRNA profiles, our system provides a unique capability to read back the developmental history and trajectory of each cell as it progresses through human embryogenesis. This technology will advance our understanding of how tissues develop from single cells and has potential implications for regenerative medicine.

Afternoon Session: 2:30 - 3:20 pm
TRAINEE TALK #11

Harry Chun Man Cheng

PhD Student, GSAT

Supervisor: Dr. Nika Shakiba
Shakiba Lab

An Embryonic Stem Cell Simulator That Incorporates Biological Time

Harry Chun Man Cheng, Maria Abou Chakra, Gary D Bader, Nika Shakiba

ESC Simulator

Cell Cycle

Live Cell Imaging

During development, embryonic stem cells (ESCs) make cell fate decisions – whether to divide, die or differentiate. Each ESC is akin to a tiny computer, carrying a DNA-based processor that allows it to interpret the signals it receives from its microenvironment. By understanding the rules that govern this processor, we open the door to engineering ESCs in robust manufacturing processes, deriving cell therapies for clinical use. A key ingredient that may govern the ESC's genetic processor is the cell cycle. Cell cycle duration changes drastically during development, generally starting with fast cycles and slowing down as the cells differentiate. Theoretically, the cell cycle acts as a transcriptional filter to control gene expression, where the length of DNA on which a gene is encoded determines the time it takes for transcription. However, current models of the ESC gene regulatory mechanisms do not include cell cycle and gene length effects. Here, through live cell imaging, we monitored the cell cycle progression of human ESCs during *in vitro* pluripotency maintenance and differentiation into different germ layers using the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system. We tracked individual cells and input their cell cycle history as a new parameter in simulating ESC. Aided by a computational model, we predict that differences in gene transcript levels under different cell cycle durations give rise to transcriptional heterogeneity and the emergence of divergent cell types. Using an experiment-to-computation loop, we are building the ESC simulator to predict the cell fate trajectory of ESC-derived cells reliably.

SBME Research Day Poster Presenters

The poster session will take place from 1:00 - 2:30 pm in the L2 Atrium of the Gordon B. Shrum Building.

1	Alex Pieters	Master's Student, SBME	BioMEMS Lab
	Evaluating Riboflavin As a Biocompatible Photo-initiator for Gelma Hydrogels in Spinal Cord Injury Repair		Keywords: <i>Hydrogel; Tissue Engineering; Spinal Cord injury</i>
2	Alexandre Leblond	Staff, SBME	Cellular Microenvironment Design Lab
	Improving Access To Sanitary Products in Uganda Via Sustainable and Distributable Fungal Biomanufacturing		Keywords: <i>Fungal Biomaterials; Menstrual Pads; Biocomposites</i>
3	Ali Khajegili Mirabadi	PhD Student, Bioinformatics	Bashashati Lab
	Pathology Report Representation Learning for Patient Outcome Prediction		Keywords: <i>Computational Pathology; Survival Prediction; Large Language Models</i>
4	Ali Shahdoost	PhD Student, SBME	Shakiba Lab
	Metabolic Profiling of Genetically Variant Human Pluripotent Stem Cells		Keywords: <i>Human Pluripotent Stem Cells; Metabolic Regulation; Genetic Stability</i>
5	Amir Rad	PhD Student, SBME	Molecular Mechatronics Lab
	Next-Generation AI-Enabled Multimodal Wearable for Physiological Monitoring and Haptic Feedback in Human-Centric Digital Health		Keywords: <i>Multimodal Wearable; AI-Enabled; Physiological Monitoring</i>
6	Ansel Chen	Master's Student, SBME	Computational Ophthalmic Imaging Lab
	Label-Free Spectroscopic Differentiation of Retinal Deposits in Alzheimer's Disease Using Visible Light Optical Coherence Microscopy		Keywords: <i>Label-Free Spectroscopy; Ad Retinal Imaging; Optical Coherence Microscopy</i>
7	Anthony Wong	Postdoctoral Fellow, SBME	Rossi Lab
	Mapping and Enhancing mRNA Vaccine Delivery and Immune Activation for SARS-COV-2		Keywords: <i>Vaccines; Sars-Cov-2; Lipid Nanoparticles</i>
8	Arman Adel	PhD Student, SBME	Yachie Lab
	A Cuffed CRISPR Guide RNA for MicroRNA Activity-Dependent Genome Editing		Keywords: <i>miRNA; Genome Editing; Molecular Recording</i>
9	Behnam Maneshgar	PhD Student, Bioinformatics	Aim Lab
	GeneExpert: A Foundation Model for Gene Expression Understanding		Keywords: <i>Foundation Model; Gene Expression; RNA-Seq Applications</i>
10	Behnam Panahi Velashedi	PhD Student, SBME	Yachie Lab
	Development of a 3D Bioprinted Atrial Tissue Model to investigate Fibrosis and Atrial Fibrillation Mechanisms		Keywords: <i>Bioprinting; Atrial Fibrillation; Tissue Engineering</i>
11	Beth Castle	PhD Student, SBME	Stem Cell Bioengineering Lab
	Mapping Variability in Pluripotent Stem Cell-Derived Hemogenic Endothelial Cells Using Cellular Indexing of Transcriptomes and Epitopes Sequencing		Keywords: <i>Cellular Engineering; Blood Development; Regenerative Medicine</i>
12	Brett Kiyota	Staff, SBME	Yachie Lab
	Global Embedding and Contextualization of Hundreds of Millions of Single-Cell Genomics Profiles		Keywords: <i>Single-Cell Analysis; Large-Scale Data; Perturbation Analysis</i>
13	Bruce Lin	PhD Student, SBME	Rossi Lab
	Identifying Mechanistic Differences Between Regenerative and Degenerative Infarcted Hearts		Keywords: <i>Cardiac Fibrosis; Fibroblast Activation; Gene Regulatory Network</i>
14	Catherine Ko	Master's Student, SBME	Zandstra Lab
	Linking Soluble Microenvironment Dynamics To Cell Fate: Predictive Analytics for iPSC To HSC Differentiation		Keywords: <i>Regenerative Medicine; Bioprocess Engineering; Process Analytics</i>
15	Chaehyeon Lee	Staff, SBME	Yachie Lab
	MILK: Exploring Large-Scale in Vitro Single-Cell Perturbation Datasets via Representative Subsampling		Keywords: <i>Bioinformatics; Representative Subsampling; Cellular Bioengineering</i>
16	Chengyu Ye	PhD Student, SBME	Yachie Lab
	A Rapid Retrospective Cell Clone Isolation Method		Keywords: <i>RNA Editing; Clone Isolation; Adar</i>
17	Chun WAI Cheung	PhD Student, SBME	Rossi Lab
	Characterization of DPP4+ Fibroadipogenic Progenitors in Skeletal Muscle		Keywords: <i>Muscle Regeneration; Fibroadipogenic Progenitor; Regenerative Medicine</i>

SBME Research Day Poster Presenters

18	Dayag Sheykharimi	Postdoctoral Fellow, SBME	Yachie Lab
	Environmental Remodelling of the Yeast Protein Interactome		Keywords: <i>Interactome; Perturbation; Barcode Fusion</i>
19	Diego Perez Hidalgo	Undergraduate Student, SBME	Yachie Lab
	Engineering Magnetically Inducible Split TEVp for Controlled Membrane Expression		Keywords: <i>Protein-Level Regulation; Magnetogenetics; Protein Modelling</i>
20	Divy Raval	PhD Student, SBME	Zandstra Lab
	Temporally Resolved Gene Regulatory Networks Reveal Changing Transcription Factor Activities Throughout Thymic T-Cell Development		Keywords: <i>Gene Regulation; Multiomics; Developmental Biology</i>
21	Doris Liang	PhD Student, SBME	Wang Lab
	Bone Adaptation in Human Proximal Femur – A Synchrotron Radiation Micro-CT Study		Keywords: <i>Biomaterials; Hip Fracture; High Resolution Imaging</i>
22	Dustin Ameis	PhD Student, SBME	de Boer Lab / Yachie Lab
	Light-Activated Lentiviruses		Keywords: <i>Virus; Optogenetics; Molecular Biology</i>
23	Edward Melnyk	Master's Student, SBME	Hedtrich Lab
	Developing a Clinically Translatable inhaled Lipid Nanoparticle-Mediated Gene Therapy for Cystic Fibrosis		Keywords: <i>Lipid Nanoparticles; Gene therapy; Cystic Fibrosis</i>
24	Elham Mohseni	PhD Student, SBME	BioAugmentative Interfaces Laboratory
	Design and Development of a Soft and Implantable Sensor-Actuator Device for Bladder Management		Keywords: <i>Biomaterials; Implantable Devices; Sensors</i>
25	Ellie Leung	Master's Student, SBME	Laksman Lab
	Extrusion-Based 3D Bioprinting of Cardiac Tissues Using Collagen-Fibrin Bioinks and HiPSC-Derived Cardiomyocytes and Cardiac Fibroblasts		Keywords: <i>3D Bioprinting; Regenerative Medicine; Tissue Engineering</i>
26	Enzo Giacopino	PhD Student, SBME	Shakiba Lab
	Signature of Elite hPSC Sub-Populations for Blood-Vessel Organoid Formation		Keywords: <i>Human Pluripotent Stem Cells; Clonality; Organoid Engineering</i>
27	Eric Yan	Staff, SBME	de Boer Lab
	Characterization of Transcription Factors in iPSC-Derived Lung Cell Differentiation		Keywords: <i>Regenerative Medicine; Gene Regulatory Network; Stem Cell Differentiation</i>
28	Evan Wilson	Master's Student, SBME	Lang Neurosurgery Lab
	Investigating the Network Effects of theta Frequency Deep Brain Stimulation in Parkinson's Disease With Functional Magnetic Resonance Imaging		Keywords: <i>Neuromodulation; Parkinson's Disease; Imaging</i>
29	Genevieve Bonnor	Master's Student, SBME	HuMBL
	Modeling Soft Tissue in IMU Kalman Filters Improves Measurement Accuracy		Keywords: <i>Biomechanics; Wearable Sensing; Kalman Filters</i>
30	Herbert Yao	PhD Student, SBME	Yachie Lab
	Human Gene Regulatory Network inference Through a Custom Peter-Clark Algorithm		Keywords: <i>Systems Biology; High Performance Computing; Causal Discovery</i>
31	Hourieh Movasat	PhD Student, SBME	Shakiba Lab
	Mapping Beta Cell Heterogeneity: Cellular insights From hPSC-Derived Differentiation		Keywords: <i>Diabetes; Cell Fate Tracking; Synthetic Biology</i>
32	Iman Amani Tehrani	PhD Student, SBME	Keywords: Implantable Biosensing Laboratory (IBL)
	Regional Tissue Perfusion index (RTPI): a New Optical-Based Metric for Quantifying Regional Tissue Perfusion		Keywords: <i>Blood Flow; Near-infrared Spectroscopy; Tissue Perfusion</i>
33	Ipek Egilmez	Master's Student, GSAT	Shakiba Lab
	A Game-theoretic Perspective On Embryonic Development: a 'Goldilocks' Cell Number Optimizes Viability		Keywords: <i>Embryonic Development; Game theory; Modeling</i>
34	Jae-Yoon Kim	Undergraduate Student, SBME	He Lab
	Developing Scalable, Clean, and Affordable Growth Factor Production for Cell Culture		Keywords: <i>Recombinant Cytokines; Protein Engineering; Cost-Effective Protein Production</i>
35	Jerry He	PhD Student, Microbiology	Tropini Lab
	Exploring the Role of Commensal Biofilms in Gut Microbial Community Dynamics		Keywords: <i>Gut Microbiome; Genetic Engineering; Biofilms</i>

SBME Research Day Poster Presenters

36	Jessica Xin	Undergraduate Student, SBME	Mcnagny Lab Keywords: Asthma; Bile Acid; Therapeutics
	Evaluating a Bile Acid Metabolite for Managing Steroid-Insensitive, Severe Asthma		
37	Jj Hum	Master's Student, SBME	de Boer Lab Keywords: Reporter Assays; Genome Regulation; Cell Sorting
	Scaling Up Massive Parallel Reporter Assays With Bulk Quantitative Density-Based Cell Sorting		
39*	Joshua De Guzman	Staff, SBME	Shakiba Lab Keywords: Mitochondrial Networks; Cell Competition; Human Pluripotent Stem Cells
	Investigating the Role of Intercellular Mitochondrial Transfer in Cell Competition of Human Pluripotent Stem Cells		
40	Juan Burckhardt	PhD Student, MBIM	Tropini Lab Keywords: Bacterial Biosensors; Microbiome; Synthetic Biology
	A Bacteroides Synthetic Biology Toolkit to Build an in vivo Malabsorption Biosensor		
41	Julia Brown	Master's Student, SBME	Hedtrich Lab Keywords: Base Editing; Gene Therapy; Disease Modeling
	Adenine Base Editors Effectively Correct Epidermolytic Ichthyosis Causing Mutations		
42	Jun Song	PhD Student, SBME	Computational Ophthalmic Imaging Lab (COIL) Keywords: Optical Coherence Tomography; Retinal Imaging; in vivo Imaging
	Quantitative Analysis of in vivo Imaging Characteristics of Mouse Retina		
43	Justin Qian	Undergraduate Student, SBME	de Boer Lab Keywords: Computational Biology; Regulatory Genomics; Machine Learning
	Evaluation of Active Learning Selection Strategies and Characterization of Selected Sequences for Sequence-to-Expression Models		
44	Kimiya Mousavi	Master's Student, SBME	Optical Cancer Imaging Lab Keywords: Optical Coherence Tomography; Trophoblast Organoids; Label-Free Imaging
	Label-Free Quantification and Characterization of Trophoblast Organoids Using Dynamic Optical Coherence Microscopy		
45	Lauren Puumala	PhD Student, SBME	BioMEMS Lab Keywords: Biosensors; Surface Functionalizaiton; Diagnostics
	Minimizing Biofouling On Polydopamine-Functionalized Biosensors		
46	Lixin Chu	Master's Student, SBME	Tam Lab Keywords: Hyperpolarized Xenon-129 MRI; CT; Deep Learning
	Converting Lung Structure to Function: Developing Deep Learning Image Synthesis of Chest CT to 129XeMRI		
47	Madina Kagieva	Master's Student, SBME	Yachie Lab Keywords: Human Stem Cell; Genome Editing; Virus Like Particles
	Massive Parallel Screening to Increase Genome Editing Outcomes in Human Stem Cells		
48	Mahsa Khalili	Researcher, SBME	HuMBL Keywords: Photoplethysmography (PPG); Wearable Devices; Cardiac Monitoring
	Assessing Photoplethysmogram (PPG) Signal Quality Across Participant Groups and Settings		
49	Marvin Wu	Master's Student, SBME	Bashashati Lab Keywords: Lung Cancer; Image Classification; Multimodal Machine Learning
	Multimodal Fusion of Machine Learning Models on Histopathology Slides, Computed Tomography Scans, and Demographic Data for Predicting EGFR Mutation in Lung Adenocarcinoma		
50	Mohammad Shahidul Islam	PhD Student, SBME	Computational Ophthalmic Imaging Lab (COIL) Keywords: OCT-Angiography; Variable Interscan Time Analysis; Perfusion Dynamics
	Advanced Choriocapillaris Perfusion Quantification With a Robust Variable Interscan Time Analysis Framework		
51	Mona Siu	PhD Student, SBME	Stem Cell Bioengineering Lab Keywords: HSC and T Cell Differentiation; CRISPR Screen; Notch Signalling
	Unveiling Novel Genes and Gene Regulatory Networks for T-Cell Specification Using CRISPR Screens in Human Pluripotent Stem Cell-Derived Hematopoietic Progenitors		
52	Omar Bashth	PhD Student, SBME	Shakiba Keywords: Stem Cells; Synthetic Biology; Differenitiation
	A Synthetic Device to Monitor the interaction Between Human Embryonic Stem Cells		
53	Quynh Nguyen	Master's Student, SBME	Laksman Lab Keywords: Single Cell RNA Sequencing; Hypertrophic Cardiomyopathy; Multiomics
	Identifying the Transcriptomic Signatures Underlying Hypertrophic Cardiomyopathy Using Single-Nucleus RNA Sequencing		

*Note: There is no poster #38

SBME Research Day Poster Presenters

54	Raha Ahmadi	Master's Student, SBME	Tam Lab
		Interpretable Deep Learning for COPD Detection From CT Imaging	Keywords: COPD Detection; Deep Learning; Medical Image Analysis
55	Robben Liu	Undergraduate Student, SBME	Shakiba Lab
		Expansion and Controlled Individual Settlement of hPSC Aggregates in a Microfluidic System for Differentiation and Formation of Organ-Like Models	Keywords: Stem Cell Engineering; Organ On a Chip; Scale Up System
56	Sam Khalilitousi	Master's Student, SBME	Yachie Lab
		TOPIC: Topic-Guided Probabilistic Image-Based Cell-Segmentation	Keywords: Spatial Transcriptomics; Cell Segmentation; Bioinformatics
57	Sambina Islam Aninta	PhD Student, SBME	de Boer Lab
		Position Dependent Variant Effects Reveal Importance of Context in Genomic Regulation	Keywords: Variant Effects; Genome Regulation; Machine Learning
58	Satyam Priyadarshi	Staff, SBME	de Boer Lab
		GAME: Genomic API for Model Evaluation	Keywords: Standardized Genomic Model Benchmarking; Functional Genomics; Machine Learning
59	Sean Okawa	PhD Student, SBME	Yachie Lab
		Deciphering the Phosphocode of Cell Differentiation and Development	Keywords: Genome Editing; Stem Cell Differentiation; Signal Transduction
60	Shahriar Shalileh	PhD Student, SBME	BioAugmentative Interfaces Laboratory
		Fully-Implantable Optical Devices for Neuromodulation of the Spinal Cord	Keywords: Soft Electronics; Optogenetics; Implantable Devices
61	Shrivatsan Rajagopalan	PhD Student, SBME	Computational Ophthalmic Imaging Lab
		Spatial-Phase Resolved, Extended-Depth ex vivo Ocular Tissue Imaging Using Self-Referenced Optical Coherence Microscopy	Keywords: Optical Coherence Microscopy; Computational Refocusing; Ex-Vivo Retina, Cornea
62	Si Xuan Chen	Undergraduate Student, Faculty of Science	McNagny Lab
		Optimizing Lenti-Transduction of PBMC-Derived T Cells Using GMP-Grade Products for CAR-T Cell Generation	Keywords: Chimeric Antigen Receptor; Lentiviral Transduction; T Lymphocytes
63	Sofia Romero	PhD Student, SBME	Yachie Lab
		CASTOR: a Platform To Robustly Reconstruct Evolutionarily Plausible Sequences From the Most Diverse Evolutionary Scenario Space	Keywords: Ancestral Sequence Reconstruction; Protein Engineering; Sequence Space
64	Sophie Perry	Undergraduate Student, SBME	Laboratory of Microtechnologies for Quantitative Biomedicine
		Microfluidic Analysis of Spatial Drug Response Heterogeneity in Cancer Cell Migration	Keywords: Cancer Heterogeneity; Collective Cell Migration; Spatiotemporal Analysis
65	Taia Yuen-Joaquin	Master's Student, SBME	Stem Cell Bioengineering Lab
		Developing an ex vivo Platform for Increasing Lymphoid Progenitor Output in Aged HSCs for Thymic Rejuvenation	Keywords: Aging; Regenerative Medicine; Stem Cells
66	Thurayyah (Omnia) Taha	Master's Student, SBME	Hedrich Lab
		A Lymphoreticular Unit to Model T Cell Dynamics in the Lymph Node	Keywords: Tissue Engineering; 3D Models; Immunomodulation
67	Vincent Halim	PhD Student, SBME	Hedrich Lab
		Optimizing CRISPR-Cas9 mRNA for Epithelial Skin and Lung Gene Editing	Keywords: Genome Editing; mRNA Design; Epithelial Tissues
68	William Cheney	PhD Student, SBME	de Boer Lab
		Directed Evolution of DNA Binding Domains	Keywords: Directed Evolution; Synthetic Biology; Protein Design
69	Yas Oloumi Yazdi	PhD Student, SBME	BioMEMS
		Impact of MRI on an Injectable Hydrogel With Magnetically Alignable Microstructures for Oriented Cell Growth	Keywords: MRI; Biomaterial; Magnetic Microstructures
70	Yeganeh Dorri Nokoorani	PhD Student, SBME	Shakiba Lab
		Comparing Growth Dynamics of Wild-Type and Genetically Variant Human Pluripotent Stem Cells Between Adherent and Suspension Cultures in Mono- and Co-Culture Settings	Keywords: Human Pluripotent Stem Cells; Scale-Up; Genetic Variations
71	Yin Liu	PhD Student, SBME	Yachie Lab
		Massively Parallel Survey of CRISPR Base Editing Activities	Keywords: Genome Editing; CRISPR; Cytidine Deaminases